\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx\) [1221]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 122 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=-\frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(A-B+3 C) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \]

[Out]

-(A-B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+(A+B-C)*(
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+(A-B+3*C)*sin(d*x+c)/
a/d/cos(d*x+c)^(1/2)-(A-B+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4197, 3120, 2827, 2716, 2719, 2720} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A-B+3 C) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])),x]

[Out]

-(((A - B + 3*C)*EllipticE[(c + d*x)/2, 2])/(a*d)) + ((A + B - C)*EllipticF[(c + d*x)/2, 2])/(a*d) + ((A - B +
 3*C)*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]]) - ((A - B + C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c +
 d*x]))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3120

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
 + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {C+B \cos (c+d x)+A \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx \\ & = -\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} a (A-B+3 C)+\frac {1}{2} a (A+B-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{a^2} \\ & = -\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}+\frac {(A+B-C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {(A-B+3 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{2 a} \\ & = \frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(A-B+3 C) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}-\frac {(A-B+3 C) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = -\frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(A-B+3 C) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 12.63 (sec) , antiderivative size = 1648, normalized size of antiderivative = 13.51 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {2 (2 C+A \cos (c)-B \cos (c)+C \cos (c)) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec (c)}{d}+\frac {4 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {8 C \sec (c) \sec (c+d x) \sin (d x)}{d}\right )}{(A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}-\frac {2 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))}-\frac {2 B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))}+\frac {2 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))}+\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}-\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}+\frac {3 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])),x]

[Out]

(Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((2*(2*C + A*Cos[c] - B*Cos[c
] + C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] +
C*Sin[(d*x)/2]))/d + (8*C*Sec[c]*Sec[c + d*x]*Sin[d*x])/d))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])
*(a + a*Sec[c + d*x])) - (2*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4},
Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1
 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x -
ArcTan[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])
) - (2*B*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[
c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[C
ot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*
(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) + (2*C*Cos[c/2 + (d
*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A +
 B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[
1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c
+ d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) + (A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*C
sc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + Ar
cTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + Arc
Tan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcT
an[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 +
 Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos
[2*c + 2*d*x])*(a + a*Sec[c + d*x])) - (B*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d
*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan
[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[
c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x +
 ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x
])) + (3*C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((Hyper
geometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos
[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan
[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + A
rcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c
]^2]]))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(170)=340\).

Time = 2.26 (sec) , antiderivative size = 353, normalized size of antiderivative = 2.89

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -B +3 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -B +5 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(353\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*(-cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*
x+1/2*c),2^(1/2))+A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticE(
cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))
-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-B+3*C)*sin(1/2*d*x+1/2*c)^4+(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-B+5*C)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^3/(2*sin(1/2*d*x+1/2*c)^2-1)/
cos(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 315, normalized size of antiderivative = 2.58 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {2 \, {\left ({\left (A - B + 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-i \, A + i \, B - 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A + i \, B - 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (\sqrt {2} {\left (i \, A - i \, B + 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A - i \, B + 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(2*((A - B + 3*C)*cos(d*x + c) + 2*C)*sqrt(cos(d*x + c))*sin(d*x + c) + (sqrt(2)*(-I*A - I*B + I*C)*cos(d*
x + c)^2 + sqrt(2)*(-I*A - I*B + I*C)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))
+ (sqrt(2)*(I*A + I*B - I*C)*cos(d*x + c)^2 + sqrt(2)*(I*A + I*B - I*C)*cos(d*x + c))*weierstrassPInverse(-4,
0, cos(d*x + c) - I*sin(d*x + c)) + (sqrt(2)*(-I*A + I*B - 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(-I*A + I*B - 3*I*C
)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + (sqrt(2)*(
I*A - I*B + 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(I*A - I*B + 3*I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstra
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\int \frac {A}{\sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A/(sqrt(cos(c + d*x))*sec(c + d*x) + sqrt(cos(c + d*x))), x) + Integral(B*sec(c + d*x)/(sqrt(cos(c +
 d*x))*sec(c + d*x) + sqrt(cos(c + d*x))), x) + Integral(C*sec(c + d*x)**2/(sqrt(cos(c + d*x))*sec(c + d*x) +
sqrt(cos(c + d*x))), x))/a

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))), x)